Для обеспечения максимально полного сгорания бензина в цилиндрах автомобильного двигателя надо очень точно дозировать воздух и топливо, а также тщательно перемешать их между собой. Простейшими способами добиться этого достаточно сложно, поэтому на смену карбюраторам распылительного типа пришли системы впрыска топлива под давлением или инжекторы.
Содержание статьи:
Что такое инжектор простыми словами
Подать топливо в цилиндр можно двумя способами:
- Втянуть его при помощи разрежения, возникающего во время такта всасывания четырёхтактного двигателя, одновременно распыляя в проносящемся мимо сопла диффузора потоке воздуха;
- Впрыснуть под внешним давлением, создаваемым отдельным насосом, через распылитель топливной форсунки.
По первому принципу действуют все карбюраторы, а второй является основой инжекторных систем впрыска.
История появления
Первые системы впрыска появились ещё в позапрошлом веке примерно одновременно с карбюраторами. Тогда же они были и запатентованы. Инженеры сразу сообразили, что если измерить массу поступающего воздуха, то можно с высокой точностью дозировать количество бензина, впрыскивая его под давлением. Но развитие техники тогда не позволило широко внедрять узлы этого направления в серийные автомобили.
Это интересно: Как работает адаптивная регулируемая подвеска в автомобиле
Карбюраторы были несравненно проще и надёжней, а главное – дешевле. Прочие же их недостатки были не очень важны, поэтому все двигатели комплектовались исключительно карбюраторами.
Первыми с принципиальными недостатками карбюраторов столкнулись конструкторы авиационной техники. Самолёты испытывали перегрузки во всех направлениях, топливо поступало нерегулярно, моторы работали с перебоями. Поэтому на истребителях уже к началу второй мировой войны системы впрыска начали постепенно вытеснять карбюраторы.
Топливные инжекторы одинаково стабильно работали при любой пространственной ориентации самолёта и при любых перегрузках. Развитие это прекратилось только с окончанием применения поршневых двигателей в авиации и переходом на реактивную тягу.
Примерно тогда же на достоинства впрыска обратили внимание и конструкторы гоночных автомобилей. Здесь задачей было максимальное увеличение мощности моторов, с чем инжекторы справлялись куда лучше.
Как часто бывает в развитии автомобильной техники, новые топливные системы стали постепенно переходить и на гражданские серийные автомобили.
Сразу после войны разработкой инжекторов занялись многие специализированные фирмы, их труды были выкуплены и развиты крупными предприятиями, в результате чего сформировались основные типы и принципы работы приборов впрыска.
Лучшими изделиями стали узлы и агрегаты фирмы Bosch. Сначала чисто механические K-Jetronic, а потом и с внедрением электронных компонентов KE-Jetronic. Именно электроника позволила полностью решить все задачи и сформировать облик современной системы впрыска бензина.
Виды инжекторов
Некоторая путаница в терминологии привела к тому, что понятие инжектора может применяться, как к системе впрыска в целом, так и к одиночной форсунке, в английском языке называемой injector.
В отечественной терминологии почти повсеместно слово «инжектор» означает всю систему впрыска, отличая её по принципу работы от карбюратора.
Различается несколько типов систем впрыска, как по расположению форсунок во впускном тракте, так и по способу организации:
- Одноточечный впрыск в ресивер впуска, внешне очень похоже на карбюратор, но топливо поступает под давлением через управляемую форсунку;
- Многоточечный впрыск во впускной коллектор максимально близко к впускному клапану каждого из цилиндров;
- Непосредственный впрыск в камеру сгорания;
- Механическое управление дозированием, когда количество топлива определяется положением расположенной в воздушном потоке пластины регулятора;
- Электромеханический, часть функций регулирования передано от гидравлики к электронике;
- Электронный впрыск, дозирование определяется вычисленным микрокомпьютером временем открытия клапанов форсунок.
На завершающем этапе развития устройство управления впрыском было интегрировано с системой зажигания, образовав функционально законченный модуль управления двигателем на основе зашитой в памяти устройства математической модели.
Устройство
Современный инжектор содержит несколько подсистем:
- Топливный насос, забирающий бензин из бака и подающий его на вход рампы форсунок под строго определённым давлением;
- Бензиновые форсунки, состоящие из электромагнитных клапанов и распылителей;
- Электронный блок (система) управления двигателем ЭСУД;
- Набор датчиков, подающих в ЭСУД информацию о режиме работы двигателя, давлении, температуре и расходе воздуха, фазе, в которой в каждый момент находятся детали мотора, положении педали акселератора и многих других параметрах;
- Системы снижения токсичности, включающей каталитический нейтрализатор отработанных газов, кислородные датчики, клапан подачи части выхлопа снова в цилиндры (рециркуляция или EGR);
- Управление моментом подачи искры зажигания с датчиком детонации.
Все узлы расположены на двигателе и вокруг него, за исключением топливного насоса, который обычно погружён в бензин внутри бака.
Принцип работы инжектора
Топливо из бака подаётся насосом к форсункам под давлением, которое обеспечивает регулятор. Различаются два случая, когда регулятор стоит на рампе форсунок, сливая излишки бензина в обратную магистраль или более современное устройство, объединяющее насос с регулятором в единый модуль, тогда надобность в обратке отпадает.
Рампа объединяет между собой входы всех форсунок, выходы которых направлены сквозь стенки впускного коллектора прямо на впускной клапан. При подаче электрического сигнала на форсунку она открывается, и топливо распыляется под давлением в коллектор в течение дозированного промежутка времени открытия.
Именно это время определяет цикловой расход цилиндра, то есть количества бензина, расходуемого за четыре такта. Моменты впрыска могут быть разными по цилиндрам, тогда говорят о фазированном впрыске.
Цикловой расход вычисляется ЭСУД на основании данных о массе поступившего воздуха, степени открытия дроссельной заслонки и скорости вращения вала двигателя.
Читайте также: BAS — что это за система помощи при торможении автомобиля
Вносятся также дополнительные корректировки этого времени по анализу данных обратной связи с датчиков кислорода в выхлопной трубе и ряда других обстоятельств. Алгоритм вычисления достаточно сложен и непрерывно совершенствуется.
В основном в целях экологичности выхлопа, что в настоящий момент стало более важным, чем мощность и даже экономичность.
Достоинства и недостатки
Системы впрыска в настоящее время полностью вытеснили карбюраторы, поэтому недостатков у них практически не осталось. Скорее спор идёт между направлениями непосредственного впрыска в цилиндр и многоточечного во впускной коллектор.
Достоинства же инжектора неоспоримы и проявляются почти во всём:
- требования по экологии невозможно обеспечить никакой другой системой питания;
- полное сгорание топлива обеспечивает максимальную экономичность, достичь идеала не получается лишь из-за противоречивых требований по экономии и экологии;
- мощность и вид скоростной характеристики, то есть кривой зависимости крутящего момента от оборотов можно задавать в модели двигателя, то есть в программном виде, особенно это касается моторов с турбонаддувом;
- управление мотором может быть полностью автоматизировано, доступны такие ранее необычные функции как отключение части цилиндров, система «старт-стоп», интеграция с противоугонным комплексом.
Некоторая сложность системы внушала опасения на первых этапах её внедрения. Сейчас автомобильный мир настолько привык к инжектору, что опасений он вызывает не больше, чем бытовые гаджеты вроде мобильных телефонов, которые реально даже гораздо сложнее.
Частые поломки
Надёжность элементов впрыска очень высока, особенно у электронных компонентов.
Проблемы могут возникнуть только в узлах, связанных с гидравликой, потреблением воздуха и бензина. Например:
- чаще всего наблюдаются поломки бензонасоса, связанные с его естественным износом, особенно если применяется не очень качественное топливо;
- могут частично или полностью отказать форсунки, на которых откладываются лаки и смолы из проходящего горячего бензина;
- засоряется датчик массового расхода воздуха, значительно реже его аналог – ДАД, то есть датчик абсолютного давления;
- окисляются всевозможные разъёмы и места заделки проводов, что скорее связано с экономией на комплектующих;
- если используется дешёвый контактный датчик положения дроссельной заслонки (ДПДЗ), то его приходится регулярно менять из-за износа токопроводящей дорожки;
- нередко проблемы возникают из-за подсоса воздуха в обход датчиков, что непосредственно не связано с инжектором, но проявляется так же и требует общей диагностики управления двигателем;
- засоряются каналы дроссельной заслонки и регулятора холостого хода, обычно из-за плохой фильтрации воздуха и общего износа механики двигателя.
К полному отказу двигателя может привести только поломка насоса и обрыв датчика положения коленчатого вала. Все остальные проблемы парируются программой и мотор продолжает работать, хотя и с ухудшением характеристик, что сопровождается высвечиванием индикатора самодиагностики – лампочки «Check engine».
Чуть менее надёжна и вынослива система непосредственного впрыска, к тому же её компоненты гораздо дороже. Но дальнейший рост экономичности и экологичности ДВС возможен только в этом направлении.